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Abstract

Dynamic contrast-enhanced (DCE) imaging is widely used for in vivo assessment of the cerebral blood perfusion. In this work, we
investigate the use of independent component analysis (ICA) on DCE imaging data for assessment of cerebral blood perfusion, without
any prior knowledge of the underlying tissue vasculature and arterial input function. The minimum description length (MDL) criterion
and principle component analysis (PCA) were employed to reduce the dimension of the data. An oscillating index method was used to
select the components of interest. Numerical simulation and patient case studies were carried out to investigate the performance of ICA.
The results show that ICA is able to extract physiologically meaningful components from the DCE imaging data. The advantages of ICA
include its efficiency of computation, clarity of obtained component maps, and no need of the manually selected input function. The
obtained independent component maps can provide reliable reference to identify the arterial and venous structure, and allow better
demarcation of the tumor territories. The potential of ICA to be a useful clinical tool for diagnosis of cerebral vascular disease and
for the assessment of treatment response has been demonstrated.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamic contrast-enhanced (DCE) imaging with com-
puted tomography (CT) or magnetic resonance imaging
(MRI) is widely used in scientific research and clinical prac-
tice for in vivo assessment of the cerebral blood perfusion
(Klotz and Konig, 1999; Koenig et al., 2001; Vonken
et al., 1999; Wirestam et al., 2000). Increasing evidence
has shown that the perfusion information derived from
DCE imaging data can potentially be helpful to understand
the pathophysiology of cerebral vascular diseases (Cala-
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mante et al., 2002; Koenig et al., 2001), and allows the cli-
nicians to monitor and assess the therapeutic effects
(Guckel et al., 1994; Koh et al., 2004).

In the technique of DCE imaging, an injection of con-
trast medium (tracer) is administrated intravenously, and
then continuous acquisition of data from a single scan slice
is performed. The passage of tracer particles through the
brain creates the temporal changes of physical signals
(amount of absorbed X-ray radiation in CT; local suscep-
tibility in MRI), which in turn cause intensity changes on
the captured sequential images. From those images, we
can assess the changes in tracer concentration over time,
which not only monitor the tracer kinetic behavior but also
reflect the brain hemodynamic status. In clinical practice,
DCE imaging normally acquires 50–100 images per case
with a scan time of 1 s/frame or 0.5 s/frame. To extract
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useful information from those image series and depict the
underlying physiological process, a variety of image analy-
sis techniques have been proposed and investigated.

1.1. Analysis of dynamic contrast-enhanced images

Simple parametric maps showing time to peak signal
intensity and peak intensity values are commonly used, as
they are easy to calculate and may have some relation to
physiological parameters. However, they are also related
to the rate of contrast injection and particular imaging
sequences, hence cannot reliably measure the cerebral
hemodynamics.

Alternatively, microcirculatory parameters, such as cere-
bral blood flow, cerebral blood volume, and mean transit
time, have been increasingly reported, because they can
eliminate the effect of injection rate, and are physiologically
meaningful (Calamante et al., 2002; Koenig et al., 2001;
Koh et al., 2004). The calculation of microcirculatory
parameters is based on the indicator-dilution theory, which
assumes a convolution integral relationship between the
residual tracer concentration and the arterial input, and
hence entails a deconvolution process (Koh and Hou,
2002; Koh et al., 2004; Wirestam et al., 2000). In practice,
the arterial input function is usually estimated by sampling
at a major artery (anterior or middle cerebral artery), and
the sampling region is manually selected by experts with
anatomy knowledge (Murase et al., 2001), which hence
restricts the possibility of automatic analysis. In addition,
to account for the time delay of tracer passage in cerebral
tissue relative to the sampling artery, bolus arrive times
(BATs) have to be estimated. Otherwise, the time delay
could cause a significant bias in the estimated microcircula-
tory parameters (Calamante et al., 2000; Cheong et al.,
2003). Although the calculation of the BAT using regression
model is less than 20 ms (Cheong et al., 2003), it could take
more than 20 min in a voxel-by-voxel analysis where tens of
thousands of BATs need to be calculated. The requirement
for computation of BATs limits the application of deconvo-
lution techniques for quick analysis.

In this work, we investigate the use of independent com-
ponent analysis (ICA) on DCE imaging data for assess-
ment of cerebral blood perfusion, without any prior
knowledge of the underlying tissue vasculature and arterial
input function. ICA is a powerful data-driven statistical
technique. It has been successfully used in the analysis of
electroencephalographic (EEG) and magnetoencephalo-
graphic (MEG) recordings (Hyvarinen, 1999a). Recently,
ICA has been applied in functional magnetic resonance
imaging (fMRI) studies to extract the task-related brain
activation (Beckmann and Smith, 2004; Calhoun et al.,
2004; Jung et al., 2001; McKeown et al., 1998a; McKeown
and Sejnowski, 1998b). We were, therefore, motivated to
investigate the application of ICA on DCE imaging data
for assessment of cerebral blood perfusion. In the litera-
ture, ICA has also found applications in DCE-MRI for
hemodynamic segmentation of the brain (Kao et al.,
2003), development of MR angiography (Suzuki et al.,
2003), and detection of the breast lesions (Yoo et al., 2002).

1.2. Independent component analysis

ICA was originally proposed to solve the blind source
separation (BSS) problem (Comon, 1994). For DCE imag-
ing, the measured data could be looked as a summation of
the brain hemodynamic behaviors (caused by different local
microvasculature and brain functional status) and some
artificial processes (such as subtle head movements, physi-
ological pulsations, and machine noise). By assuming the
spatial independence of those hemodynamic patterns and
artificial processes, the ICA technique is able to separate
those mixed signals. As the areas affected by abnormal
brain functions, for example, tumors, should be unrelated
to those affected by artificial factors, ICA also has the
potential to reveal brain hemodynamic abnormalities.

In the independent component analysis of DCE imaging
data, each frame of the sequential images is converted into
a 1D row signal vector, Xi (i = 1, . . . ,m), where i is the index
of scan time point, and m is the total number of scans. The
length of the signal vector, v, is equal to the number of vox-
els per frame. The signal Xi is considered as a linear com-
bination of the independent components, Cj (j = 1, . . . ,n)

X ik ¼
Xn

j¼1

Mij � Cjk; ðk ¼ 1; . . . ; vÞ: ð1Þ

The entire image data can be expressed as

X ¼M � C; ð2Þ
or in other form:

C ¼W � X; ð3Þ
where X is the m · v measured data matrix, M is the m · n

mixing (linear combination) matrix, and C is the n · v com-
ponent matrix. The n · m weight matrix, W (also called un-
mixing matrix), is the pseudo-inverse of M. Both of the
weight matrix and the component matrix can be obtained
by iteratively updating the elements of W such that the tar-
get components Cj can meet some criteria (as independent
to each other as possible). The raw vector Cj is then re-
formed into 2D to construct the component map. Those
maps are fixed over time, while the relative contribution
of each map changes with a unique associated time course
(column of mixing matrix, M).

Different algorithms for implementation of independent
component analysis have been proposed, such as JADE
(Cardoso and Souloumiac, 1993), Infomax (Bell and Sej-
nowski, 1995), FastICA (also called fixed-point ICA,
Hyvarinen, 1999b) and Nonparametric ICA (Samarov and
Tsybakov, 2004). The Infomax ICA and FastICA are often
applied in the implementation of spatial ICA (Calhoun
et al., 2004; Jung et al., 2001; Kao et al., 2003; McKeown
et al., 1998a; Yoo et al., 2002). Although their general per-
formances are near equally fine (Jung et al., 2001), the Fas-
tICA is superior in terms of computation load
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(Giannakopoulos et al., 1999), while the Infomax ICA has
advantages in global estimation and noise reduction (Espos-
ito et al., 2002). Detailed comparison of these algorithms
can be found in the literature (Cardoso, 1997; Calhoun
et al., 2004; Esposito et al., 2002; Giannakopoulos et al.,
1999; Hyvarinen et al., 2001). The Infomax ICA was
employed in our work. This algorithm is based on the Info-
max principle. It initializes W to the identity matrix I, then
iteratively attempts to maximize the joint entropy of the out-
puts passed through a set of nonlinear functions, g(Æ). The
nonlinear function, which provides necessary higher-order
statistical information, is chosen to be the logistic function:

gðCiÞ ¼
1

1þ e�Ci
; ð4Þ

where C = WZ = WVX, V = 2(XXT)�1/2. The use of the
whitening matrix Z instead of X aims to constrain the ma-
trix W to be symmetric (Jung et al., 2001). The entropy in a
discrete form is:

Hð�Þ ¼ �
X

k

pk log pk; ð5Þ

where pk is the probability of the kth event. The elements of
W are updated using small batches of data vectors drawn
randomly from Z without substitution, according to:

DW ¼ �g
oHðgðCÞÞ

oW

� �
WTW ¼ gðI þ YCTÞW; ð6Þ

where g is the learning rate (typically near 0.01, and is grad-
ually reduced until W stops changing appreciably) and the
vector Y has elements:

yi ¼
o

oCi
ln

ogðCiÞ
oCi

� �
¼ 1� 2gðCiÞ: ð7Þ

More detailed discussion of the training process can be
found in the literature (Bell and Sejnowski, 1995).

In this work, the Infomax ICA was applied to both syn-
thetic data and real dynamic contrast-enhanced CT imag-
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Fig. 1. (a) Synthetic brain mask. 1, artery; 2, vein; 3, tumor; 4, artery (2 s dela
white matter. (b) Concentration–time curves used in synthetic DCE imaging d
ing data. In particular, we examined the performance of
ICA to reveal cerebral vascular abnormalities and its appli-
cability as a tool for clinical image analysis.
2. Methods

2.1. Simulation experiment

Totally 9 forms of simulated concentration–time curves
were employed in the experiment. Those concentration–
time curves were obtained from the DCE CT imaging data
of a patient with a meningioma and cerebral ischemia.
Smoothing preprocess was applied on those signals before
constructing synthetic dynamic images. A synthetic brain
mask was used to discriminate the location of each form
of curves, as shown in Fig. 1a and b. Synthetic dynamic
images consist of 50 images of 63 · 63 voxels with a time
interval Dt of 1 s. Gaussian noise was then added to simu-
late noisy concentration–time curves with signal to noise
ratios (SNRs) of 5, 10, 20 and 50. These SNR values are
common in DCE imaging. The SNR is approximated by
the ratio of standard deviation of the arterial signal to that
of the noise. Similar to the previous work (Koh et al.,
2004), a preprocessing step of smoothing with a 3 · 3 med-
ian kernel was applied to those synthetic images. The
dimension of the synthetic data were reduced by prepro-
cessing the data with PCA. The Infomax ICA scheme
(McKeown et al., 1998a) was then used to separate the pre-
processed synthetic images into independent spatial com-
ponents. The simulation experiment was carried out in
MATLAB on a Pentium IV personal computer.

2.2. Patient study

In this study, the real DCE-CT imaging data are the
same as those in our previous work (Koh et al., 2004;
Wu, 2004). Nine patients (3 females, 6 males), ages from
10 20 30 40 50
Time (s)

(1) Artery
(2) Vein
(3) Tumor
(4) Artery (delayed)
(5) Vein (delayed)
(6) Grey matter
(7) Ischemic
(8) Ventricle
(9) White matter

yed); 5, vein (2 s delayed); 6, grey matter; 7, ischemic area; 8, ventricles; 9,
ata.
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55 to 81, with ischemia and/or brain tumor were involved.
All the images were transferred to a Pentium IV personal
computer for processing. The entire data analysis was
implemented in MATLAB. For each patient, voxels out-
side the brain were excluded by a minimum signal thresh-
old. PCA preprocessing was used to reduce the
dimension of the data. The Infomax ICA scheme was then
carried out to extract independent component maps and
associated time courses.

2.3. Image analysis

The number of independent components (ICs), n, is the
only parameter that needs to be determined before carrying
out ICA. Although the exact number of ICs is always
unknown in practice, the assumption that it is not more
than the number of measured signals (n 6 m) is acceptable,
and can make the problem more tractable. Different crite-
ria, such as the Bayesian information criterion (BIC), the
Akaike information criterion (AIC), the minimum descrip-
tion length (MDL) criterion, and their modified versions
have been used in image analysis for model order selection
(Beckmann and Smith, 2004; Calhoun et al., 2001). In this
study, we estimated the number of ICs by using the MDL
criterion. MDL was originally proposed by Rissanen
(1978) and then popularized in the signal processing com-
munity by Wax and Kailath (1985). The MDL criterion
has been found unbiased and statistically consistent (Wax
and Kailath, 1985). For our case, MDL has the form as

MDLðkÞ ¼ �ðm� kÞ � v � ln

Qm
i¼kþ1

k1=ðm�kÞ
i

1
m�k

Pm
i¼kþ1

ki

þ 1

2
k � m� k � 1

2

� �
� ln v; ð8Þ

where k is the number of ICs (sources), m is the total num-
ber of scans, v is the number of voxels per frame, and ki de-
notes the ith largest eigenvalue of the covariance matrix,
XXT. The estimation of the number of ICs is determined
as the value of k 2 {1, . . . ,m � 1} for which the correspond-
ing MDL value is minimized.

After obtaining a few independent spatial components
by ICA, a problem has to be dealt with is how to identify
a ‘‘meaningful’’ subset from the component set, because a
large majority of components are non-interesting (noise
or uninterpretable component). The kurtosis of compo-
nents’ distribution of voxel values could be useful for this
issue (Arfanakis et al., 2002; Formisano et al., 2002),
because components with a kurtosis near zero (Gaussian
distribution) are more likely to present a noise-like spatial
distribution than recognized spatial patterns. In this study,
a simple oscillatory index was employed to select the com-
ponents of interest. The basic idea lies in the fact that the
cerebral hemodynamic patterns should have relatively
smooth time courses, while the noise component could be
very unpredictable and always presents an oscillatory time
course. Therefore, we may consider the components with
smoother time courses as the components of interest. By
simply estimating the smoothness of all the time courses,
we can select the components of interest from the whole
component set. The smoothness is estimated by the oscilla-
tory index, Oi, which is defined as:

Oi ¼
P

jjMjþ1;i �Mj;ij
maxðMiÞ �minðMiÞ

; ð9Þ

where Mi is the ith column of the mixing matrix (the time
course of the ith component), and Mj,i is the element of the
jth row and ith column. Those time courses are considered
significantly smooth, if the following criterion is met:

Oi 6
�O� l � SD;

where �O and SD represent the mean value and standard
deviation of the oscillatory indices, respectively. The value
of l is used to tune the threshold. Alternatively, we can sim-
ply select a fixed number of components associated with
the smallest oscillatory indices. In order to keep as many
components of interest as possible, we experientially
choose l = 1.28 in our patient study experiments, and select
seven components with the smallest oscillatory indices in
the simulation experiment.

In order to make comparison, the generated indepen-
dent component maps were converted to Z scores and
thresholded. The Z scores do not have determinate statisti-
cal meanings (McKeown et al., 1998a), but were used to
describe areas (voxels with z P 3.5) that contribute largely
to a particular component. Those areas were compared
with the synthetic brain mask using the similarity rate
(SR), which is defined as:

SR ¼ the number of same significant voxels

average number of significant voxels
: ð10Þ
3. Results

3.1. Simulation results

The thresholded Z maps (z P 3.5) of interpretable ICs
(generated by the Infomax ICA scheme with SNR = 50,
the number of ICs = 13) were combined into one binary
map, as shown in Fig. 2a. The corresponding time courses
were shown in Fig. 2b. The tumor, artery, vein and ventri-
cle areas in the binary map match with the synthetic brain
mask in terms of both shape and position. The correspond-
ing contribution–time curves also show consistency with
related concentration–time curves. However, we also note
that the ICA scheme failed to reveal ischemia, white matter
and gray matter areas in our simulation, and the success-
fully revealed areas shrink a little. The contribution–time
curve of the artery (delayed) related component decreases
compared with the original concentration–time curve. In
addition, part of the artery (delayed) region also contrib-
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Fig. 2. (a) Combined binary map of interpretable independent components and (b) their corresponding time courses. The MDL criterion suggests the
number of ICs to be 13 at the noise level of SNR = 50. The Infomax ICA successfully separates the tumor (3 0), artery (1 0, 4 0), vein (2 0, 5 0) and ventricle (8 0)
related components, while the grey matter, white matter and ischemic areas are not revealed.

Table 1
Similarity rates (%) of the areas that contribute largely to the respective interpretable ICs compared with the original synthetic brain mask at various SNRs
and number of ICs

SNR Number of ICs SR (%) in the respective areas

Tumor Artery Artery (delayed) Vein Vein (delayed) Ventricle

5 50 87.50 81.82 NA 84.00 59.15 NA
20 87.50 75.00 NA 75.00 59.15 9.01
11a 87.50 69.23 NA 72.41 59.15 11.01
5 87.50 54.55 NA 72.41 59.15 10.91

10 50 87.50 58.06 NA 84.00 59.15 IC splits
20 87.50 60.00 75.00 84.00 59.15 74.47
13a 87.50 60.00 78.26 80.77 59.15 74.47
5 87.50 58.06 NA 71.19 59.15 71.11

20 50 92.22 81.82 58.06 IC splits 84.00 90.32
20 92.22 58.06 81.82 84.00 84.00 90.32
13a 92.22 58.06 81.82 84.00 84.00 90.32
5 92.22 58.06 NA 71.19 84.00 86.60

50 50 96.25 81.82 81.82 84.00 84.00 IC splits
20 92.22 81.82 81.82 84.00 84.00 90.32
13a 92.22 81.82 81.82 84.00 84.00 90.32
5 92.22 58.06 NA 71.19 84.00 85.71

a Number of independent components suggested by the MDL criterion.
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utes to the component that is highly correlated to the
tumor (not shown).

The interpretable independent component maps do not
change abruptly when the number of ICs decreases. The
respective similarity rates compared with original synthetic
brain mask are shown in Table 1. However, we note when
the number of ICs is set as large as 50, the generated com-
ponent splits severely. One example is shown in Fig. 3. In
this case (SNR = 50, the number of ICs = 50) the ventricle
related component is split into two. The areas that contrib-
ute largely to the respective components almost have the
same shape and position (Fig. 3, left) in the map, while
their corresponding time courses (Fig. 3, right) show com-
plementary properties. On the contrary, when the number
of ICs is set too small, some of the patterns cannot be sep-
arated (rows 10, 14 and 18 in Table 1).

The MDL criterion suggests a moderate number of ICs
in our simulation (Table 1). Although it is a little overesti-
mating (the actual number of source signals is 10 including
noise), the obtained component maps and corresponding
time courses are acceptable. Furthermore, reducing the
dimension of the data with MDL and PCA can save the
computation time of ICA from around one hundred
seconds to ten. Most of the interpretable independent
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Fig. 3. Example of component splitting (SNR = 50, the number of ICs = 50). The ventricle related component was split into two (a) and (b). The areas
that contribute largely to the respective components almost have the same shape and position (left), while their corresponding time courses (right) show
complementary properties.
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components are within the selected subset using the oscil-
lating index method, except some cases when the compo-
nents split severely (due to the large number of ICs). The
calculation of oscillatory indices is within 1 ms.

3.2. Patient case results

Four representative study cases are shown here to illus-
trate the performance of ICA for revealing cerebral vascu-
lar abnormalities. In the case study of a patient with two
tumors, 31 (suggested by MDL criterion) independent
component maps and corresponding time courses were
generated by the Infomax ICA. Among them, five compo-
nents were automatically selected based on the oscillatory
indices. All the components of interest were found within
the selected component set. The component maps and
their corresponding time courses are shown in Fig. 4. In
order to make comparison, the respective contribution–
time curve (solid line) and the real tracer concentration–
time (TC) curve (dash line, obtained from one voxel of
the region of interest) were plotted together. The maxi-
mum amplitude of each curve was normalized to unit 1
for display. Fig. 4a shows a component representing the
arterial pattern. The component map (Fig. 4a, left) pre-
sents the arterial structure clearly, and its contribution–
time curve shows consistency with the real arterial TC
curve (Fig. 4a, right). Fig. 4b demonstrates the venous pat-
tern. Besides the above two, one component that is highly
correlated to the brain tumors was also extracted (Fig. 4c).
The location and the shape of the tumors can be clearly
identified in the component map. The corresponding con-
tribution–time curve shows similarity with the real TC
curve.

The ICA results of a patient with metastases from the
lungs are shown in Fig. 5. The number of ICs was set to
36 according to the MDL criterion. In this case, the struc-



0 10 20 30 40 50
Time (s)

0 10 20 30 40 50
Time (s)

0 10 20 30 40 50
Time (s)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

I

IC contribution curve
real arterial TC curve

IC contribution curve
real arterial TC curve

IC contribution curve
real arterial TC curve

b

c

a

Fig. 4. Case study of a patient with tumors using the Infomax ICA. Both of the independent component maps (left) and the corresponding time courses
(right, solid line) are shown. In order to make comparison, the contribution curve and the real tracer concentration–time curve (dashed line) were plotted
together. The maximum amplitude of each curve was normalized to unit 1 for display. (a) Arterial pattern. (b) Venous pattern. (c) Tumorous pattern.
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ture of the artery and vein, especially the sagittal sinus, is
clearly observed (Fig. 5a, b, left). The two metastatic
tumors are also obvious in the corresponding component
map. After the radiotherapy treatment, the tumor related
component map (Fig. 6, the number of ICs was set to 39)
of the same patient shows an obvious reduction in the
tumor extent, which illustrates a positive effect of the treat-
ment. The corresponding contribution–time curve presents
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a shift from the real TC curve. The sagittal sinus area is
observed in the tumor related component map (Fig. 6,
arrow).
The case study of a patient with ischemia was also carried
out. Although ICA (the number of ICs was set to 37) failed
to extract a component that is highly correlated to the
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shows reduced intensity in the left occipital lobe (arrow).
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ischemia, the infarction is still recognizable in the artery
related component map as shown in Fig. 7. The ischemic
territory can be observed in the left occipital lobe (Fig. 7,
arrow), with reduced intensity compared to its mirror area.

In all the study cases, components that are highly corre-
lated to arterial patterns as well as venous patterns were
obtained. In seven out of nine tumor cases, the components
that represent tumorous patterns were successfully
extracted. In the rest two cases, the tumor territories are
recognizable in the vein related component maps.

4. Discussion

4.1. Simulation study

This simulation result illustrates the capability of the
ICA technique to separate different brain hemodynamic
patterns. After the dimension of the data is reduced by
PCA according to the MDL criterion, the ICA scheme per-
forms well in terms of both reliability and efficiency. In
fact, the PCA preprocessing diminishes the noise effect to
some extent, which hence improves the ICA result (Hyvari-
nen, 1999a). Part of the artery region was found contribut-
ing largely to the tumor related component map. This kind
of components overlapping is possible, because one voxel
might contribute significantly (at different level) in more
than one component maps when the corresponding time
courses are similar. The interpretable independent compo-
nent maps do not show abrupt changes when the number
of ICs decreases. This is possibly because a large percent-
age of the total variance of the data was remained in the
PCA preprocessing step, therefore components with large
changes in time courses (contribute most of the data vari-
ance), such as artery, vein and tumor related components
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could be essentially unchanged. In the simulation, other
sources (ischemia, grey matter and white matter) that con-
tribute less to the data variance were not separated. They
might be either corrupted by noise or ruined in component
splitting. In addition, the information about those sources
may be discarded during the PCA preprocessing step,
because they are corresponding to small eigenvalues. One
way to solve this problem might be removing the recogniz-
able components and run ICA iteratively (Kao et al., 2003).

The MDL criterion suggests a consistent number of ICs
in our simulation. Although it is a little overestimating, the
ICA results were not badly affected. Actually, the exact
number of ICs is always unknown and difficult to estimate
in practice. For simplicity, we may assume n = m, so that
we can get a square mixing matrix. However, m is deter-
mined by the image acquisition scheme (number of scans
in DCE imaging) that has little relationship to the number
of independent sources in the brain. Choosing the number
of ICs heuristically is also not a good option, as it needs
more prior knowledge and can result in an arbitrary thresh-
old level. McKeown and Sejnowski (1998b) suggested that
the number of ICs can be reduced by first preprocessing the
data with the PCA technique, which provides a way of
keeping the advantage of a square mixing matrix without
having n = m. Nevertheless, the cutoff point for the eigen-
values may not be obvious, and improper choice takes a
risk of changing the intrinsic dimensionality and leads to
a suboptimal results (Esposito et al., 2002). On the one
hand, underestimation of the data dimensionality will dis-
card too much valuable information and result in poor per-
formance of component extraction. On the other hand,
overestimation will highly increase the computational cost
and raise the risk of component splitting. An easy way to
determine the cutoff point might be using the simplistic cri-
teria like retaining 99% of eigenvalues. This method can
eliminate some of the noise effect but still has no relation
to the problem of correctly estimating the number of inde-
pendent sources. From this point of view, the MDL crite-
rion at least provides a way to estimate the number of ICs.

The oscillating index method shows a good performance
for automatically selecting the components of interest, as
long as the number of ICs is properly set. Compared with
other selection criterion, such as kurtosis of the compo-
nents’ distribution of voxel values, the oscillating index
method provides the advantage of computational
simplicity.

4.2. Patient study

From the patient case studies, we note that independent
component analysis has the capability to extract compo-
nents that represent cerebral hemodynamic patterns from
the DCE imaging data. The main advantage of ICA is that
it makes little prior assumption about the underlying phys-
iology and allows the intrinsic structure of the clinical data
to be accessed. This can be very important for patients with
complex cerebral hemodynamic patterns.
Another advantage of ICA is that the obtained indepen-
dent component maps have good clarity. The arterial and
venous structures can be identified readily. Furthermore,
as the tumor related component is separated from the arte-
rial and venous components, it allows better demarcation
of the tumor territories compared with conventional micro-
circulatory parametric maps.

In addition, ICA can provide both spatial information
and temporal information, because both independent
component maps and their corresponding time courses
can be achieved. Therefore, ICA can be helpful to under-
stand cerebral hemodynamics and make clinical diagno-
sis. Although the contribution–time curves cannot be
interpreted as tracer concentration–time curves directly
(they were rescaled during the ICA process), they do
show similarity with the real TC curves after both being
normalized.

The computational efficiency is also an advantage of
ICA. In our study, the total process time for one patient with
the Infomax ICA is about 6 min, less than half of the time
needed for numerical deconvolution. Furthermore, neither
the manually selected arterial input function nor the calcu-
lation of bolus arrive times is required for ICA, while both
of them are needed for deconvolution analysis.

In our study, the number of independent components
suggested by MDL criterion might be a little overestimated
as it is fairly larger than the number of selected components
of interest. However, considering the complexity of
patients’ cerebral hemodynamics and the unknown noise
factors, we do not advise using a very small number of
independent components. Recently, Li et al. (2006) have
proposed a correction method for order selection to deal
with the over-estimation problem.

Normally 4–6 components of interest were automatically
selected using the oscillating index method (l = 1.28).
Besides the arterial, venous and tumorous components,
some components that may suggest head movements were
also observed. In Fig. 8, the ring-like pattern in the compo-
nent map (left) together with the corresponding monotonic
contribution–time curve (right) may represent a slow head
shift. In Fig. 9, there was a sudden drop on the correspond-
ing time course, which may be caused by a small quick head
movement. Similar components that are highly correlated to
head movements were also reported in other applications
(McKeown and Sejnowski, 1998b). If such head movements
can be confirmed, those components could be helpful to
eliminate or reduce the effect of head movements. From this
point of view, ICA can be used as a preprocessing step prior
to further analysis by other techniques.

In conclusion, ICA has the capability to separate the
DCE imaging data into physiologically meaningful compo-
nents, which present qualitative information about the
cerebral blood perfusion. The obtained artery and vein
related components can provide reliable reference to iden-
tify the arterial and venous structure. The tumorous com-
ponent map allows better demarcation of the tumor
territories compared with conventional microcirculatory
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Fig. 9. Case study of a patient with tumors using the Infomax ICA. The independent component map (left) and corresponding time course may suggest a
quick head movement.
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Fig. 8. Case study of a patient with metastases from the lungs before radiotherapy using the Infomax ICA. The independent component map (left) and
corresponding time course may suggest a gradual head movement.

264 X.Y. Wu, G.R. Liu / Medical Image Analysis 11 (2007) 254–265
parametric maps. Reducing the dimension of the clinical
data by PCA and MDL can make ICA work more effi-
ciently. The components of interest can be automatically
selected using the simple oscillating index method. Our
study has demonstrated that ICA has the potential to be
a useful clinical tool for diagnosis of cerebral tumors and
ischemic stroke, as well as the assessment of treatment
response. However, the patient cases in our study are lim-
ited, further validation work needs to be carried out.
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